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Abstract

X-ray diffraction topographs of wafers produced by
separation by implanted oxygen (SIMOX) show moireÂ
fringes in both re¯ection and transmission geometry.
These fringes reveal deformations of the order of 10ÿ6 to
10ÿ8 between the layer and the substrate of the SIMOX
material. A new method for a quantitative analysis of
moireÂ fringes is developed and allows reconstruction
with a high sensitivity of the three components of the
relative displacement ®eld between layer and substrate
directly from a set of topographs. This method is used
for the interpretation of moireÂ topographs of entire 4 in
SIMOX wafers and of regions around crystal defects.
Finally, the capabilities of an analysis of moireÂ fringes
are compared with those of the usual diffraction
topography.

1. Introduction

X-ray diffraction moireÂ fringes have been observed on
topographs of LLL interferometers (Bonse & Hart,
1965) and of bicrystals (Chikawa, 1965; Lang, 1968). On
topographs of wafers produced by the method of
separation by implanted oxygen (SIMOX), such fringes
were ®rst reported by Jiang et al. (1990). The analysis of
moireÂ fringes on X-ray topographs is used for many
applications (for a review, see Hart, 1975) and its
foundations have recently attracted growing interest
(Yoshimura, 1996a; Haroutyunyan & Sedrakyan, 1997).
In spite of the large number of publications on this
subject, almost exclusively the symmetrical transmission
(Laue) geometry has been investigated. Little effort has
been spent on analysing topographs recorded in an
asymmetrical transmission or in a re¯ection (Bragg)
geometry. Recently, Ohler et al. (1996) used a series of
topographs recorded with symmetrical and asymme-
trical transmission re¯ections to determine six of the
nine components of the `relative strain tensor' between
the two parts of a bicrystal. Both crystal parts were
supposed to be perfect in this analysis. The aim of the
present work is to go one step further and to use the
spatial information of the topographs to determine also
the spatial variations of the relative strain tensor and the

nonlinearities of the relative displacement ®eld between
the two parts of the bicrystal. Among other factors, the
observation of previously unexplained bent moireÂ
fringes on topographs of SIMOX wafers motivated this
work. The theoretical basis for such an analysis was
given by Ohler & HaÈrtwig (1999). We would also like to
point out that, to the best of our knowledge, for the ®rst
time the re¯ection geometry is extensively employed
here to record diffraction moireÂ patterns and that sets of
moireÂ patterns are used to reconstruct the relative
displacement ®eld between the two parts of a bicrystal.
This is a special example for the solution of an inverse
problem, that is for the calculation of a lattice defor-
mation directly from contrast distributions in a set of
X-ray topographs.

2. Samples and experimental methods

In the experiments of the present study, bicrystals
produced with the SIMOX method were used. For this
method, commonly and also for the samples investigated
here, 550 mm thick Czochralski-grown silicon wafers,
each with a [001] surface normal, are used. The SIMOX
process (Badaw & Anand, 1977) consists of an oxygen-
ion implantation into silicon and a subsequent heat
treatment. It leads to the formation of a monocrystalline
silicon layer on top of an amorphous SiOx layer (x ' 2)
on top of a silicon substrate. The defect structure of such
`standard' samples has been investigated by Prieur,
Guilhalmenc et al. (1996), among others. Other samples
were obtained from the same initial silicon material but
with a multiple oxygen implantation (`multi-implanta-
tion') process (e.g. Veneables et al., 1992). For both the
standard and the multi-implantation material studied
here, the SiOx layer is 0.4 mm thick, whereas the thick-
ness of the silicon layer originally is 0.2 mm. On many
samples, this thickness was increased by chemical
vapour deposition to thicknesses from 1 mm up to
15 mm. A sketch of the SIMOX structure is given in Fig.
1. Most of the studied samples were quarter cuts from
4 in SIMOX wafers but also entire 4 in wafers were
analysed. Like most heterostuctures, SIMOX wafers are
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bent; typical bending radii ranged between 50 and
100 m.

X-ray diffraction topography is a well established
method to image defects in crystalline materials (Bowen
& Tanner, 1998). For the present work, topographs have
been recorded in both transmission and re¯ection
geometries.

The transmission topographs were taken at the ID19
topography beamline, a wiggler beamline of the ESRF
that provides X-ray energies between about 8 and
140 keV. The source size is about 130 � 50 mm hori-
zontal � vertical. The experimental station is 145 m
downstream from the source and a beam size up to
45 � 15 mm horizontal � vertical can be used. The
small source size and the large distance between the
source and the sample lead to a high spatial resolution of
the topographs recorded at this beamline, even for large
sample-to-®lm distances. For example, for our white-
beam experiments (see Fig. 2a), typical sample-to-®lm
distances were 17±20 cm (but could also be much
larger). This was necessary to separate the diffracted
beams. For such a set-up, the geometrical resolution of
the measurement is much better than 1 mm. All trans-
mission topographs shown in this work were recorded
with white synchrotron radiation. However, to check the
nature of the observed fringes, other topographs, not
presented here, were also recorded with double-crystal
set-ups. Therefore, mostly a symmetrical 111 transmis-
sion monochromator was used. The topographs were
then taken with 220 or 111 re¯ections in symmetrical or
asymmetrical transmission geometry, respectively. Two
kinds of ®lms were used as detectors. The faster Kodak
INDUSTREX SR, and the slower but high-resolution
Kodak SO-343 with a developed unexposed grain size of
about 40 nm (Prieur & Cloetens, 1996). After exposure
and development, the resolution of the ®rst ®lm was a
few micrometres, and that of the second ®lm was not
much better than 1 mm. The exposure times were of the
order of sub-seconds or seconds for the SR ®lm, and a
minute or several minutes for the SO-343.

In the re¯ection geometry, the topographs were
recorded with the Cu K�1 radiation from an X-ray tube
using a curvable 224 monochromator/collimator crystal
to adapt to the sample bending (Jenichen et al., 1985,
1988). Fig. 2(b) shows this set-up. Such a topography
camera is particularly suited to the study of semi-
conductor heterostructures. It is also constructed so that
the X-ray source can be rotated in a way that the sample
is held horizontally and in this way the mounting does
not introduce additional stress. Thanks to an asymmetric
cut of the monochromator/collimator crystal, samples
with a diameter of up to 10 cm can be entirely imaged
with this camera. Both ORWO TF 10 ®lms, with reso-
lutions of 10±20 mm, and Ilford L4 nuclear plates, with a
typical resolution of 1 mm, have been used to record the
images. The ®lm material was always mounted parallel
to the crystal surface. The topographs of the 4 in wafers
were recorded with the ORWO TF 10 ®lms within an
exposure time of 5 to 10 min. The exposure time of the
nuclear plates ranged between 3 and 6 h. Depending on
the re¯ection used and the beam size needed to illumi-
nate the sample, the sample-to-®lm distances ranged
between 1 and 2.5 cm. For the smaller distances, a
geometrical resolution of 1 mm can be achieved.

Fig. 2. The experimental techniques used in the present study: (a)
white-beam topography using synchrotron radiation and (b)
curvable monochromator topography at a laboratory source.

Fig. 1. A vertical cut through the SIMOX structure of the studied
samples, with thicknesses t of the individual layers, and the
coordinate system used.
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3. Experimental results

On most of the topographs, recorded with white or
monochromatic radiation, in transmission or re¯ection
geometry, pronounced interference fringes could be
seen. The nature of these fringes was ®rst checked by
etching away part of the layer on some samples. These
regions did not give rise to fringes on the topographs.
This can, for example, be seen on the topograph of
Fig. 3. It is also a typical example of the moireÂ fringes
recorded in re¯ection geometry. Moreover, in none of
our experiments could fringes be observed on samples
with a 0.2 mm thick layer, but they were clearly detected
on transmission and re¯ection topographs of samples
with a layer thickness of 1 mm or more. This means that
at least a layer thickness between 0.2 and 1 mm is needed
to observe fringes on X-ray topographs recorded with
our experimental methods. The interfringe distance
ranged between several hundreds of micrometres and
several millimetres, but for a given sample the fringe
spacing was signi®cantly smaller on 224 and 004 re¯ec-
tions than on 220 or 004 transmission topographs. The
fringes were also independent of the selected wave-
length. For the double-crystal topographs, in both
re¯ection and transmission geometries, the fringe
pattern did not depend on the angular deviation from
the maximum re¯ectivity position. Moreover, the
distance between the fringes shrank to 1/nth of the
initial value when the nth harmonic was used to record
the topograph. The fringe contrast was strongest for
layer thicknesses between 1 and 5 mm in the re¯ection
geometry (using the Cu K�1 radiation) and for layer
thicknesses of about 10 mm or more in the transmission
geometry (selecting wavelengths of typically 0.3 AÊ ). The
fringes were straight and had an almost constant spacing
between them on almost all topographs recorded in the
symmetrical transmission geometry. For an asymme-

trical transmission geometry, the fringes were often
bent. On topographs in re¯ection geometry, they
showed a complex pattern but the topographs of entire
SIMOX wafers displayed a remarkable symmetry. This
is seen on the topographs of Figs. 4(a)±4(d), where the
contrast recorded on the TF10 ®lms was reduced to a
pure black-and-white contrast. For example, a topo-
graph recorded with the 22Å4 re¯ection is very similar to
the one recorded with the 224 re¯ection when it is
rotated by 90�, the one obtained with the 2Å2Å4 re¯ection
must be rotated by 180� and the one of the 2Å24 re¯ection
by ÿ90� to obtain comparable similarities. These
symmetries re¯ect a fourfold symmetry of the sample
around the [001] surface normal. For geometrical
reasons, the 4 in wafers could not be imaged on a single
topograph recorded in the symmetrical re¯ection
geometry. However, such topographs of the quarter
pieces of 4 in wafers indicate a similar circular symmetry
around the centre of the wafer.

In some regions of the samples, defects were present.
The in¯uence on the fringe pattern of threading dislo-
cation pairs, typical for SIMOX, or of single dislocations
has been discussed in detail by Prieur, Guilhalmenc et al.
(1996) and Prieur, Ohler & HaÈrtwig (1996). Moreover,
the topograph presented in Fig. 3 also shows a
remarkable discontinuity, a step in the moireÂ pattern.
Such steps could also be observed on topographs of
several other samples but they were not related to the
inhomogeneities in the samples revealed by chemical
etching experiments. Other defects in the SIMOX
material with an epitaxic silicon layer were related to
agglomerations of stacking faults, decorated with pairs
of threading dislocations. Such defects give rise to
dipole-like additional interference fringes (see Fig. 5) on
all topographs except those recorded in the symmetrical
re¯ection geometry.

4. Interpretation of the topographs

The experimental ®ndings clearly show that the
observed interference fringes are moireÂ fringes. This has
also been demonstrated in an earlier work (Ohler et al.,
1996) with additional experiments. In particular, for the
samples studied here, variations of the Si and the SiOx

layer and the Si substrate thicknesses cannot in¯uence
the fringe pattern. Such an in¯uence could be due to the
PendelloÈsung effect. For the transmission experiments,
the PendelloÈsung length was typically about 60 mm. This
is much more than the variations of any of the thick-
nesses. In the re¯ection geometry, the PendelloÈsung
length was about 10 mm for the 422 re¯ection. It is much
larger than the Si and the SiO2 layer thickness. Thus, the
thickness variations do not reach the scale of the
PendelloÈsung length and, together with the other ®nd-
ings, the fringe patterns can be attributed to the moireÂ
effect. Detailed analyses of situations in which the gap

Fig. 3. MoireÂ pattern on a 422 topograph of a multi-implantation
SIMOX wafer recorded in re¯ection geometry. Layer thickness
5 mm, � � 1.5 AÊ .
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and the layer thicknesses can in¯uence the fringe
pattern are given by Yoshimura (1991) and Harout-
yunyan (1996), respectively.

In most of the published work on the diffraction
moireÂ effect, the analysis of the fringes is performed
with analogy to the superposition of optical gratings.
This is obviously correct for topographs of perfect
bicrystals recorded in symmetrical transmission
geometry. It can then be shown that for an identical
re¯ecting lattice plane spacing d in both parts of the
bicrystal and a rotation with an angle � between them,
the moireÂ fringes are perpendicular to the re¯ecting
lattice planes and have an interfringe spacing of
D � d=�. When the spacings of the re¯ecting lattice
planes differ by �d, and in the absence of a rotation, the
moireÂ fringes are parallel to the re¯ecting lattice planes
and have a spacing of D � d2=�d. By measurement of
the moireÂ fringe spacing perpendicular and parallel to
the lattice planes on an X-ray topograph, both these
contributions can be evaluated.

This description is only valid when the topograph of a
perfect bicrystal is recorded in symmetrical transmission

geometry (symmetrical Laue case). For an asymmetrical
transmission geometry, Ohler et al. (1996) have shown
that a new moireÂ fringe arises whenever �H � (r ÿ r0)
equals an integer. In this expression, r is an observation
point and r0 a reference point, both in the crystal
surface, and �H � ÿgrad�H � u�r�� is the difference
between the reciprocal-lattice vectors of the two parts of
the bicrystal. Here, u(r) is the displacement ®eld of the
atoms in one part of the bicrystal referred to the posi-
tions of the atoms in the other part, the relative
displacement ®eld. Note that u(r) is a linear function in r
for a perfect bicrystal. This description of the moireÂ
fringes implies that the component of �H perpendicular
to the sample surface cannot be determined from the
moireÂ pattern, which also follows from symmetry
considerations (Ohler et al., 1996). Moreover, only the
length and the direction but not the sign of the
component of �H parallel to the sample surface, called
�H|| from now on, can be determined from the moireÂ
fringes.

In addition, Ohler & HaÈrtwig (1999) showed that
moireÂ fringes on X-ray topographs of perfect bicrystals

Fig. 4. MoireÂ patterns on four 422
topographs of a 4 in standard
SIMOX wafer recorded in re¯ec-
tion geometry. The original grey
levels on the topographs have
been reduced to a pure black-
and-white contrast for further
analysis. Layer thickness 5 mm,
� � 1.5 AÊ .
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recorded in the re¯ection geometry can be analysed in
the same way as those recorded in the transmission
geometry. This means that the moireÂ fringes on an X-ray
topograph of a perfect bicrystal, recorded in any
geometry, are perpendicular to �H|| and have a spacing
of D � j�Hkjÿ1.

When analysing at least three different moireÂ topo-
graphs, one can determine those six of the nine
components of the relative deformation tensor
"ij�r� � @uj�r�=@xi (i; j � 1; 2; 3) that are due to the
derivations of uj(r) with respect to the directions parallel
to the sample surface, x1 and x2. For the coordinate
system used, see Fig. 1. Like the component �H3, the
component of �H that is perpendicular to the sample
surface, the three components "31, "32 and "33 cannot be
determined from the moireÂ fringes. In addition, as the
sign of �H|| cannot be found, the global sign of "ij cannot
be determined either. Now, for example for cubic crys-
tals, the reciprocal-lattice-vector difference is related to
the relative deformation tensor by �Hi � ÿ

P
"ijhj=a0,

where the hi are the Miller indices of the re¯ection, a0 is
the lattice parameter and the ui(r) and �Hi are the
components in the xi direction of u(r) and �H, respec-
tively. With an integration over a direction of observa-
tion parallel to the sample surface, rk � �x1; x2; 0�, one
can ®nd the function u(r||). The dependence of u(r) on
the direction perpendicular to the sample surface and
also the sign of u(r||) cannot be determined from the
moireÂ fringes.

This previous description has further been general-
ized by Ohler & HaÈrtwig (1999) for the case of a
bicrystal composed of one perfect and another weakly
deformed and locally perfect part. For such a `locally
perfect bicrystal', the deformed crystal part is thin and
the deformation only gives rise to a shift of the Bragg
angle, which is much smaller than the width of the
re¯ection curve. Moreover, u(r) is a slowly varying
function in r and consequently �H is not constant. This

means that the previously used expression �H � (r ± r0)
must be replaced by

R
�H�rk� � drk, which results in the

`moireÂ phase' �M�rk� � ÿH � u�rk� plus a constant phase
�0. Here, u(r||) can be an arbitrary slowly varying
function. Also for a weakly deformed bicrystal, the sign
of u(r) and its dependence on the direction perpendi-
cular to the sample surface cannot be determined from
the moireÂ fringes. A rigid-body translation u0 of one
crystal lattice with respect to the lattice of the other
plate of the bicrystal in¯uences �0, which is constant
over the entire sample, does not lead to any contrast on
the topograph and cannot be determined from the fringe
pattern. Now, a new moireÂ fringe then arises each time
the moireÂ phase equals an integer. The previous
formulation for perfect bicrystals, for which
�H � (r ÿ r0) must be an integer for a new moireÂ fringe
to appear, is a special case of the more general situation
of a locally perfect bicrystal for which ÿH � u(r||) must
be an integer at each moireÂ fringe.

The information about the relative displacement ®eld
u(r||) is contained in the intensity pro®le of the moireÂ
fringes. In the transmission geometry, a modulation of
the intensity with cos[2��M(r||)] is expected, whereas, in
the re¯ection geometry, the intensity pro®le of a moireÂ
fringe depends in a complicated way on the experi-
mental conditions (Ohler & HaÈrtwig, 1999). The
simplest way to interpret moireÂ fringes recorded in
re¯ection and transmission geometries is to sample the
intensity pattern such that one fringe only consists
of two intensities, its maximum and minimum values.
This means that the grey levels of the topographs are
translated into a pure black-and-white contrast. Then it
is also possible to interpret in the same way moireÂ
fringes recorded either in transmission or in re¯ection
geometry. However, now the spatial resolution of the
information extracted from the topographs is not better
than half the distance of a moireÂ fringe. To increase the
spatial resolution, the method presented in the following

Fig. 5. White-beam transmission topo-
graph of a standard SIMOX wafer,
showing dipole-like additional moireÂ
fringes due to agglomerations of
stacking faults and of several pairs of
dislocations with antiparallel Burgers
vectors. 040 re¯ection. Layer thick-
ness 5 mm, � � 0.3 AÊ .
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must be further developed to also take into account the
intensity pro®le of the fringes.

Now, such black-and-white topographs, like those of
Fig. 4, consist of lines where the moireÂ phase is constant,
namely the moireÂ fringes. The levels of the moireÂ phase
�M(r||) differ by � 1

2 from a black to a white and from a
white to a black moireÂ fringe. This provides, in principle,
the possibility to reconstruct the u(r||) from the �M(r||).
Therefore, one can look upon the moireÂ fringes as the
contour lines of a `�M(r||) map'. This is comparable to a
topographic map with the contour lines of a mountain
for example. The aim of the analysis of moireÂ fringes
then is to ®nd the `height' of each contour line, i.e. of
each moireÂ fringe. This procedure provides the moireÂ
phase �M(r||) from the moireÂ fringes. On each topo-
graph, the moireÂ phase �M�rk� � ÿH � u�rk� is a
projection of u(r||) on the diffraction vector H. To
determine the three components of u(r||), one needs at
least three such projections. When the �M(r||) on more
than three individual topographs have been determined
from the moireÂ fringes, they can also be checked for
consistency: the components of u(r||) calculated from the
�M(r||) in different ways must agree among themselves.

Unfortunately, such a reconstruction of u(r||) from
moireÂ topographs is not straightforward because moireÂ
fringes, like any contour lines, have several ambiguities.
Firstly, on a given topograph, `ridges' of the moireÂ phase
�M(r||) cannot be distinguished from `valleys'. This is
schematically demonstrated in Fig. 6. The possibilities
for the function H � u(r||) shown there are only two out
of many others to produce the same moireÂ pattern.
However, comparison of topographs recorded with
different re¯ections shows that such ambiguities can, in
principle, be overcome. On the other hand, �M(r||) and

ÿ�M(r||) as well as �M(r||) and �M(r||) � �0 lead to the
same moireÂ pattern ± and these ambiguities cannot be
overcome. This means, as already stated, that a rigid-
body translation u0 and also the sign of u(r||) cannot be
found from the moireÂ fringes.

The moireÂ phases on the different topographs
can be written as �M;i�rk� � ÿ

P
hijuj�rk� with

Hi � �hi1; hi2; hi3� for the diffraction vector of the ith
topograph. If the moireÂ phases �M,i(r||) were known and
not only the corresponding contour lines, i.e. the moireÂ
fringes, then the ui(r||) could be calculated by inverting
the matrix hij:

ui�rk� � ÿ
P

h�ij�M;i�rk�; �1�

where h�ij is the inverse of the matrix hij.
However, to do this, one ®rst needs to attribute a

`height' to all fringes on each moireÂ pattern; this means
that the moireÂ phase on each topograph has to be
determined.

We have developed a procedure to obtain consistent
moireÂ phases �M(r||) from a set of topographs recorded
on different re¯ections. This procedure is based on a
trial-and-error method and starts with the physically
simplest guess on the moireÂ phases. Its different steps
can be summarized as follows:

(i) Separate the contrast variations due to the moireÂ
fringes from other contrast variations like inhomo-
geneous illumination of the topograph. This can, for
example, be achieved by a ®ltering of the spatial
frequencies that constitute the images.

(ii) `Digitalize' the intensity of the moireÂ fringes such
that only two intensities, `black' and `white', appear on
the topographs. Figs. 4(a)±4(d) show fringe patterns
obtained in this way. Sometimes, especially for small
fringe spacings, our computer program did not recognize
some parts of a fringe and connected, for example, the
neighbouring black fringes across the white fringe
between them. These errors have to be corrected very
carefully, otherwise a meaningful `height pro®le' cannot
be attributed to the fringes.

(iii) As a rigid-body translation cannot be deter-
mined, one can choose an arbitrary point on the sample
for the `height' �M�rk� � 0. It may be convenient to
choose a point where the fringe spacing on all topo-
graphs is large, as for example in the centre of the
topographs in Fig. 4.

(iv) From this point, attribute `height levels' to the
moireÂ fringes in steps of 1

2 from a black to a white and
from a white to a black fringe in such a way that the
moireÂ phases �M,i(r||) are as monotonic as possible [e.g.
possibility (b) in Fig. 6]. This corresponds to the physi-
cally simplest guess for the �M,i(r||).

(v) Use equation (1) to calculate the ui(r||) from the
resulting moireÂ phases �M,i(r||). When more than three
different topographs are recorded, this may be possible
in several ways.

Fig. 6. Relation between the function H � u(r) along a given direction in
a moireÂ pattern and the location of the fringes: each time H � u(r)
equals an integer, a new moireÂ fringe is introduced in the pattern.
The two possibilities (a) and (b), out of many others that produce
the same moireÂ pattern, can only be distinguished when several
topographs with different diffraction vectors H are analysed.
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(vi) Compare the different solutions for the ui(r||), for
example by displaying them all together on the
computer screen. If it improves the agreement between
the solutions for ui(r||), invert the sign of the moireÂ
phases on one or more topographs. Isolate in this way
the regions where the different solutions for the ui(r||)
start to disagree. Up to these regions, the assumption of
monotonic moireÂ phases could explain the fringe
patterns. Beyond these regions, this is not possible. If, for
example, the moireÂ phase was increasing until then, let it
decrease and vice versa. Often it is easy to see on which
topographs this should be tried: like the contour levels
on a map, most commonly the moireÂ phase does not vary
much close to such local maxima or minima and thus the
fringes are more spread out at these places. When this
procedure is continued, a solution is found when the
agreement between the different solutions for the ui(r||)
is better than at least one lattice parameter over the
entire sample.

This procedure provides the physically simplest
solution that has the least local maxima and/or minima
of the moireÂ phases. Consequently, it also leads to the
simplest possible solution for the relative displacement
®eld. However, we have not found a proof that it is also
the unique solution. This means that other solutions for
the ui(r||), `going up and down' more often, may be
possible. However, one can, at least in principle, test all
these possibilities: as the `height difference' between
neighbouring black and white moireÂ fringes must be � 1

2,
there is only a ®nite number of possibilities to construct
the moireÂ phase from a given moireÂ pattern. In principle,
a moireÂ fringe pattern could also arise from a moireÂ
phase oscillating between two values when going from
one fringe position to the next. This would correspond
to the `most complicated' moireÂ phase. As long as a
proof of the uniqueness of the found solution cannot be
given or if it is too time demanding to test all other
possibilities, one must ask whether the resulting relative
displacement ®eld u(r||) is physically meaningful.
Moreover, the result should also be checked with one or
more topographs of other re¯ections that have not been
included in the analysis. For example, the 4 in SIMOX
wafer has been analysed with the four 224 re¯ection
topographs presented in Fig. 4 and the results have then
been checked with two 220 and two 400 transmission
topographs of the same sample.

5. Results

5.1. Reconstruction of the relative displacement ®eld
between two crystal plates

Fig. 4 shows the moireÂ fringes, reduced to a black-and-
white contrast, of the four 224 topographs recorded
from a 4 in standard SIMOX wafer. Thus, for the
determination of the three components ui(r||) of u(r||),
we disposed of one topograph more than absolutely

necessary. In general, four different topographs would
allow us to calculate the ui(r||) in four ways using
equation (1), but owing to the symmetry of the 224
re¯ections this can only be performed in two ways. Then,
the moireÂ phases �M,hkl(r||) were determined with the
procedure described before; Fig. 7 shows the moireÂ
phase of the 22Å4 topograph of Fig. 4. The moireÂ phases
of the other 224 topographs are very similar to this one
when they are rotated by 90, 180 and ÿ90� around the
vertical axis. These moireÂ phases lead to the differences
�ui(r||) between the two solutions for the ui(r||) that are
h�u1�rk�i � h�u2�rk�i � h�u3�rk�i=2 ' 1 AÊ . Here, hx(r||)i
means x(r||) averaged over the sample. The results
obtained for the ui(r||) are displayed in Fig. 8. As seen in
this ®gure, the two in-plane components u1(r||) and u2(r||)
are essentially linear functions where u1(r||) varies
mainly along the x1 direction and u2(r||) mainly along the
x2 direction. The component u3(r||), perpendicular to the
sample surface, presents a circular symmetry and a dip in
the centre of the wafer.

Now six of the nine components of the relative strain
tensor "ij�rk� � @uj�rk�=@xi can be calculated from the
derivatives of uj(r||) with respect to the two directions of
observation, x1 and x2. Therefore, the functions uj(r||) are
®rst smoothed over the width of a moireÂ fringe spacing
in order to suppress the steps due to the black-and-white
contrast on the topographs. As u1(r||) and u2(r||) are
linear functions in r||, the in-plane dilational components
are almost constant over the sample and are found to be
h"11�rk�i � 4.8 (7) � 10ÿ8 and h"22�rk�i � 4.4 (9) � 10ÿ8,
while both the rotation and the shear distortion are
much smaller: 1

2 h"12�rk� ÿ "21�rk�i � 0.1 (8) � 10ÿ8 and
1
2 h"12�rk� � "21�rk�i � 0.4 (7) � 10ÿ8. These results are
typical for standard SIMOX wafers and correspond well
to those obtained from moireÂ fringes recorded on the
two 220 and two 400 transmission topographs of a
smaller area of the sample. However, here direct

Fig. 7. The moireÂ phase obtained from the 22Å4 topograph of Fig. 4 with
the method described in the text.
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evidence is found that these components are almost
constant over entire 4 in SIMOX wafers, whereas the
other components of the relative strain tensor, obtained
from the derivatives of the component u3(r), depend on
the location on the sample.

Then, topographs of quarter pieces of standard and
multi-implantation SIMOX wafers were recorded in
symmetrical and asymmetrical re¯ection geometries and
also in transmission geometry, and were analysed in the
same way as described above. All these samples showed
the same general features as observed before: the in-
plane components of the relative displacement ®eld are
linear functions and the out-of-plane component shows
a circular symmetry and a dip in the centre of the
SIMOX wafer. Moreover, the triple implantation and
the standard samples can be distinguished by values
of "ii that are about 2±5 times larger for the multi-
implantation material than for the standard SIMOX
material.

5.2. Reconstruction of the relative displacement ®eld
around crystal defects

The method presented before can also be employed
to analyse quantitatively the moireÂ fringes around
crystal defects. If the lattice of one part of the bicrystal
can be assumed to be perfect, this allows the displace-
ment ®eld around a defect in the other part to be
reconstructed without assuming any model. However,
this can only be performed with the restrictions of the
present method that were discussed above.

For example, the spatial resolution is given by the
density of the fringes on the topograph. This has severe
implications for the study of dislocations with the
method proposed in this article. It is well known that a
dislocation with a Burger's vector b, situated in one of
the parts of a bicrystal, gives rise to N � H � b additional
fringes on the topograph (Hart, 1972). However, these
fringes follow the direction of the surrounding ones and
the spatial resolution of the reconstructed relative
displacement ®eld around the dislocation is very low.
For such cases, the ®ne details of the contrast on the
topograph can be used to extract more information on
the relative displacement ®eld. This is not performed by
the method proposed here but it has been performed
in an analysis by Prieur, Ohler & HaÈrtwig (1996),
comparing the observed contrast to the contrast
expected for a model deformation ®eld.

On one of our topographs, the 2Å2Å4 topograph of Fig. 4,
we have also observed an unusual dislocation-like
discontinuity of the moireÂ patterns. However, a careful
check has shown that this discontinuity did not corre-
spond to any dislocation present in the sample. Such
`pseudo-moireÂ dislocations' have been observed and
studied in detail by Yoshimura (1996b), but their origin
is still a matter of discussion. We have not investigated in
more detail this additional fringe but have suppressed it

Fig. 8. The components u1(r), u2(r) and u3(r) of the relative
displacement ®eld between the layer and the substrate recon-
structed from the topographs of Fig. 4.
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for the analysis by setting its moireÂ phase to that of the
surrounding moireÂ fringe. If this additional fringe really
were due to a dislocation, such an omission of an addi-
tional fringe would correspond to neglecting a single
dislocation in the entire sample. It can thus be assumed
that the error made by this simpli®cation is very small
for the reconstruction of the relative displacement ®eld.

Except these problems concerning dislocations and
`pseudodislocations', the method presented could
successfully be applied to the study of defects. For
example, the topograph of Fig. 3 shows a rectangular
area where the moireÂ pattern is dislocated with respect
to the surrounding fringes. This `phase jump' is not
constant but equals about �N ' 20% of the moireÂ
fringe spacing. It increases with an increasing compo-
nent h3 of the diffraction vector perpendicular to the
sample surface and vanishes for h3 � 0 on symmetrical
transmission topographs. It can thus be concluded that
this phase jump in the moireÂ pattern is related to a step
mainly in the component u3(r) with a height of only
�u3 � �N=h3 ' 0:3 AÊ . Such steps have been observed
on several SIMOX samples; they tend to align along
h011i directions and are well de®ned over distances up
to about 1 cm. However, the origin of such defects is not
clear and most probably they can only be observed with
methods that are as sensitive to a relative displacement
of the crystal lattice as the moireÂ effect.

Another typical defect image on moireÂ topographs of
SIMOX samples is shown in Fig. 5. Chemical etching
and scanning tunnelling microscopy have shown that
such defects are related to the epitaxic growth of silicon
and not to the SIMOX process itself. These defects
consist of agglomerations of stacking faults and of
several pairs of dislocations with antiparallel Burgers
vectors. They are hardly visible on symmetrical re¯ec-
tion topographs and one can thus conclude that
u3(r) ' 0. X-ray topographs of such defects have been
recorded with the symmetrical 220, 22Å0, 040 and 04Å0
transmission re¯ections. Fig. 9 shows the two in-plane
components u1(r) and u2(r) of the relative displacement
®eld, reconstructed from such a series of topographs.
This reconstruction corresponds well to a spherical
defect with a deformation ®eld of the form
ui�x1; x2� � "xi=�x2

1 � x2
2�n, where the `strength' of the

defect " and the exponent n can in principle be deter-
mined from the reconstructed relative displacement
®eld.

6. Discussion

6.1. SIMOX

For standard SIMOX wafers, typically values of
h"ii�r�i � 5 � 10ÿ8 (i � 1; 2) are found for the dilational
distortion between the layer and the substrate, and
values about ten times less for the rotation and shear
components. This means that the difference between the
two crystal lattices is mainly related to a tetragonal

distortion in the range of several 10ÿ8. Moreover, to
produce an in-plane lattice-parameter difference of, for
example, 5 � 10ÿ8 on a SIMOX wafer of 10 cm in
diameter, one border of the layer must be moved by
5 � 10ÿ8 � 10 cm � 50 AÊ relative to the substrate, while
the other border is ®xed. Thus, during the annealing
processes, the SiOx layer of the SIMOX structure must
allow a plastic ¯ow of the layer over such distances.
`Pinholes' (remaining Si channels through the SiOx

layer) would inhibit, at least locally, such a ¯ow and thus
disturb the high symmetry of the relative displacement
®eld u(r). One can conclude that no pinholes are present
in the studied samples.

6.2. MoireÂ topography

The possibilities of the moireÂ topography can also be
discussed in comparison with the `usual' diffraction
topography. For both methods, the same experimental
set-up can be used, the ®rst with single crystals, the
second with bicrystals and both provide information

Fig. 9. The components u1(r) and u2(r) reconstructed from a 040
transmission topograph like that presented in Fig. 5 and of 220, 22Å0,
04Å0 topographs also recorded from this defect.
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about the deformation tensor "ij�r� and the atomic
displacement ®eld u�r�. The `usual' X-ray topography is
sensitive to deformations "ij�r� down to about 10ÿ6±10ÿ7

and only for special cases can a higher sensitivity be
achieved. An analysis of moireÂ fringes on topographs of
bicrystals can cover the range from about 10ÿ5 to 10ÿ9

depending on the ®eld of view and on the re¯ection
used.

The spatial resolution of "ij�rjj� and u�rjj� obtained
from `usual' topographs is limited by the diffraction
process and cannot be better than about 1 mm. However,
the high sensitivity achieved with moireÂ topography is
paid for with a reduced spatial resolution as the infor-
mation is averaged over an area that is half a moireÂ
fringe distance for the method proposed in this article.
Typical moireÂ -fringe distances are in the range between
about 100 mm and several millimetres. This resolution
can be increased when the pro®le of the moireÂ fringes is
also used for the analysis but it is questionable whether
the limit of 1 mm can be reached.

In some cases, both the `usual' and the moireÂ topog-
raphies allow a direct reconstruction of the deformation
or displacement ®elds from the contrast on sets of
topographs (inverse problem, direct back-calculation).
To also compare the two techniques in this respect, we
assume, ®rstly, an experimental method employing
monochromatic and highly collimated radiation,
secondly, locally perfect crystals and bicrystals with a
negligible depth dependency of the deformation ®eld
and, thirdly, plane-parallel surfaces and interfaces. Then,
`usual' and moireÂ topographs provide information about
the crystal properties along rjj parallel to the surface.

On `usual' topographs of locally perfect single crys-
tals, the diffracted intensity I�rjj� is then given by the
local shift of the Bragg angle, the effective misorienta-
tion ���rjj� (Authier, 1967). For a given re¯ection, up to
six of the nine components of the deformation tensor
may contribute to this quantity. As ���rjj� is measured
with respect to the lattice planes of a perfect reference
part of the crystal, by changing the re¯ecting lattice
planes, in principle all nine components of the defor-
mation tensor "ij�rjj� could be determined. The dis-
placement ®eld u�rjj� of the deformed crystal can then be
calculated by an integration over the components of the
deformation tensor.

On moireÂ topographs of locally perfect bicrystals,
I�rjj� is given by the moireÂ phase �M�rjj). The moireÂ
phases on at least three topographs directly provide the
ui�rjj� but are given with reference to the interface plane
between the two crystals. Therefore, even by changing
the re¯ections, only six of the nine "ij�rjj� can be deter-
mined from the experiment.

7. Summary and conclusions

A method has been developed for the quantitative
analysis of moireÂ fringes on X-ray diffraction topo-

graphs. With this method, an analysis of moireÂ fringes
allows one to reconstruct the relative displacement ®eld
between the two parts of a bicrystal with a high sensi-
tivity on the basis of the contrast distribution in a set of
topographs. It has been found that, for the studied
SIMOX samples, the fringes were mainly due to a
tetragonal deformation between the unit cells of layer
and substrate and to a cylindrically symmetric relative
displacement, perpendicular to the sample surface,
between layer and substrate. A reconstruction of the
relative displacement ®eld between two parts of a
bicrystal is of more than just academic interest: for
example, in the present article it could be concluded that
no pinholes are present in the studied SIMOX samples
and that the SiOx layer must allow plastic ¯ow during
the annealing process. Finally, the relative displacement
®elds around crystal defects can also be reconstructed
from the moireÂ fringes and thus the proposed method is
a powerful tool in the characterization of bicrystals and
their defect structure.
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acknowledge Rolf KoÈ hler and Jane Richter from the
Humboldt UniversitaÈ t in Berlin for discussions and for
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